

Single Muon Spectrum from Charm Decays in 200 GeV Au+Au Collision for STAR

Chen ZHONG

speaker: Haibin ZHANG

OutLine

- Motivation
- Charm measurement at STAR
- Data Analysis
- Results
- **Summary**

SINAP

Motivation

- In relativistic heavy-ion collisions, charm quarks are believed to be produced at early stages via initial gluon fusions.
- Study of the Nbin scaling properties of the charm total cross-section can test whether the charm quarks as a probe are produced exclusively at the initial impact.

Motivation

First set of measurements, systematic errors are large. Precision data are needed

Charm measurement at STAR

- √ Direct D⁰ reconstruction
- √ electron from heavy quark semileptonic decay

ellelle

√ muon from charm semileptonic decay

 $D^0 \rightarrow e^+ + anything$ Branch Ratio: $(6.87 \pm 0.28)\%$

 $D^0 \rightarrow \mu^+ + anything$ Branch Ratio: $(6.5 \pm 0.8)\%$

elelelelegelele

Charm measurement at STAR

- ✓ Direct D⁰ reconstruction
- √ electron from heavy quark semileptonic decay
- √ muon from charm semileptonic decay

PRL 94 (2005) 062301

QM05 nucl-ex/0510063

Charm measurement at STAR

- √ Direct D⁰ reconstruction
- √ electron from heavy quark semileptonic decay
- √ muon from charm semileptonic decay

TOF - Particle velocity β

TPC - particle energy loss

Charm measurement at STAR

- √ Direct D⁰ reconstruction
- √ electron from heavy quark semileptonic decay
- √ muon from charm semileptonic decay

STAR TPC dE/dx spectrum

m² spectrum

SINAR

Charm measurement

- ◆ Too much gamma conversions and Dalitz decays at low pT
- Charm and other sources < few percent</p>

Time of Flight

Data Set

DATA SET	minbias (0~80%)	central (0~12%)
Au Au 200 GeV Run IV P05 Full Field production		
Detectors	TPC, TOF	
Events	7.8 M	15.1 M
Tracks	9.3 M	47 M
nFitPoints	>= 25	>= 25
IVzI	< 30 cm	< 30 cm
Eta	[-1,0]	[-1.0]
we set three pT bins 0.17~0.21 0.21~0.25 0.25~0.27 GeV		

Simulation/Embedding data

- Hijing I.382 AuAu 200 GeV minbias 0<b</>
 5

 20 fm 40k events
- μ embedding data

Data Analysis

Data Analysis

AuAu 200GeV HIJING+Geant production 0~80% Min. Bias. & 0~12% Central

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$$
 HIJING Simulation

Data Analysis

Background can't be removed event by event, but can be successfully dealt with statistical method

Results

With the moun measurement, the kinematic coverage for charm total cross section is larger than 90%, and the systematic error on the charm total cross section is a factor of 2 smaller.

Summary

- We present the first measurement of single muon spectra from charm decays at low P_t in 200 GeV Au+Au collision at STAR.
- The low P_t muon yields improve the determination of charm total cross section.
- The charm total cross section scales approximately with number of binary collisions.

Thank You

